
Fast and robust fragile watermarking enabling
real-time self-recovery for UAS

Laurens Le Jeune[0000−0003−0744−4897], Anna Hristoskova[0000−0002−5012−7400],
and Farhad Aghili[0000−0002−1830−6003]

Sirris, Brussels, Belgium
firstname.lastname@sirris.be

https://www.sirris.be

Abstract. Unmanned Aircraft Systems (UASs) are increasingly being
integrated into the life-cycle management of critical infrastructure, in-
cluding tasks such as inspection, maintenance, safety, and surveillance.
However, legal concerns such as visual privacy must be addressed result-
ing in the need to explore anonymization techniques. Specifically, in cases
where law enforcement requires access to the original data, reversible
anonymization necessitates robust, complex and secure solutions, ensur-
ing that only authorized individuals with proper credentials can recover
the data.
In this paper, we introduce two novel fragile watermarking approaches
with self-recovery, HiLoSpatial and HiResSpatial , that are tailored to-
wards low-latency execution on UAS platforms, and that enable recon-
struction from downstream anonymization steps. Our experiments show
that HiLoSpatial and HiResSpatial match and in most cases surpass re-
lated work with regards to security, image integrity, tamper detection
and recovery, while significantly outpacing the state of the art with re-
spect to latency. These results highlight the suitability of our approaches
for real-time deployment in UASs.

Keywords: Fragile Watermarking · Secure Shuffling · Self-recovery ·
Visual Privacy.

1 Introduction

UASs see adoption across many domains, as they expedite tasks through au-
tomation or execute risky work to improve safety. They are increasingly be-
ing incorporated in the life-cycle management of critical infrastructure [11], e.g.
damage [15] and safety inspection [24], surveillance tasks [10], and other appli-
cations [25]. However, when employed for surveillance or monitoring of critical
infrastructure, privacy concerns may arise. Personal data pertaining to visual
privacy, such as people or license plates, need to be anonymized in accordance
with regulations such as the General Data Protection Regulation (GDPR) [9].

Anynomization methods could take the form of various transformations, such
as blurring or morphing [4], or using Machine Learning (ML) techniques [34].

2 L. Le Jeune et al.

Ideally, such anonymizations should be executed on-device to limit the potential
exposure of personal data. However, due to the constrained nature of resources
such as compute on UASs the anonymization process should be lightweight to
limit any additional overhead. While effective in protecting privacy, these meth-
ods introduce challenges when access to original, unaltered data is required in
specific situations. For example, in the case of critical infrastructure, the need
may arise to reverse the anonymization of a specific footage in view of identifying
perpetrators or suspicious vehicles by law enforcement.

1.1 Motivation

The main challenge of designing a privacy-preserving solution for UAS surveil-
lance is being able to anonymize visual data while still retaining the ability
to recover the original image details when necessary. Therefore, in this paper,
we explore a fragile watermarking technique as a potential solution to recog-
nize anonymization and provide recovery capabilities. Fragile watermarking en-
ables embedding of authentication information within an image prior to the
anonymization process. This watermark can later help identify tampering and
recover the original image content. However, for such a solution to be feasible for
UAS applications (or any resource constrained video-based applications), it must
meet several vital requirements. First, the watermark embedding process must
demonstrate high throughput, ensuring it is efficient enough to support real-time
operations on resource-constrained UAS hardware. Additionally, the watermark
should not considerably compromise on the image integrity or interfere with
the anonymization process. Moreover, ensuring robust security is essential, as it
requires the embedded watermark to be resilient against unauthorized access,
thereby preventing leakage of sensitive information or unauthorized alterations.

1.2 Contributions

In this paper, we proposes two novel fragile watermarking solution tailored for
on-device UAS execution supporting the following contributions:

– Real-time processing: Maintains a high throughput when embedding, signif-
icantly surpassing the state of the art and allowing real-time embedding.

– Robust integrity verification and recovery: Matches and even surpasses re-
lated work on fragile watermarking, when it comes to maintaining and re-
covering the watermark integrity.

– Enhanced security measures: Protects against attacks by applying thorough
randomization for both recovery value localization as well as authentication.

Sect. 2 describes the current state-of-the-art solutions that approach the secu-
rity, throughput and robustness requirements. Our proposed approach is further
outlined in Sect. 3, including a detailed discussion of the executed experiments
in Sect. 4. After discussing the results in Sect. 5, we conclude the paper in Sect. 6

Fast and robust fragile watermarking with self-recovery for UAS 3

2 Background

2.1 Reversible visual privacy

Existing techniques to facilitate reversible visual privacy, where sensitive data
can be de-identified (or anonymized) and afterwards restored constitute an ac-
tive research area. One intuitive approach is to use ML for this task. Employing
an encoder-decoder structure divides the task in two components, where the
encoder does anonymization and the decoder uncovers the original content [18].
Generative Adversarial Networks (GANs) employ a generator that generates al-
ternative representations, and a discriminator that has to learn to distinguish
between real and anonymized images [16, 33]. The security of such techniques
can be further augmented with encryption [32]. Another approach employs wa-
termarking alongside other cryptographic techniques [31]. However, this requires
landmarks or coordinates which indicate the sensitive parts in an image.

Commonly thus, reversible visual privacy techniques either need some detec-
tion mechanism to identify the Region of Interest (ROI), or have the detection
mechanism built-in when using ML. As such, to facilitate reversibility, compu-
tationally expensive techniques are required. In our work, we do not rely on any
ROI, but instead watermark the entire image. If the downstream anonymization
engine then anonymizes parts of the image, our techniques allow for reconstruc-
tion, even if the anonymization technique itself is not reversible. The watermark
supports localizing anonymized areas after which recovery information stored in
untampered areas enables recovery.

2.2 Fragile watermarking with self-recovery

Watermarking comprises various techniques that can be used to protect digital
media. Typically, they belong to one of three categories: robust, semi-fragile or
fragile watermarking [14]. Robust watermarking encompasses techniques that
embed a watermark inside a cover image that is resilient against filtering, com-
pression or attacks, and are usually used for copyright protection. Fragile wa-
termarks instead embed watermarks that are altered when the cover image is
altered. This way, tampering can be detected, and the tampered areas can po-
tentially be restored. Finally, semi-fragile watermarks are robust with regards to
benign transformations, but tend to deform when under attack [23].

In this paper, we consider fragile watermarking with self-recovery, meaning
that the watermark embeds a representation of the cover image to allow for
reconstruction after tampering.

Tampering may represent any malicious change compromising the integrity
of the image. For fragile watermarking, this translates to a number of attacks
that replace pixel values with different values. Common examples include copy-
paste [27, 28, 21, 13, 22, 29] or writing text on top of the image [13, 22, 29]. Most
commonly however the cropping attack is considered [27, 8, 28, 21, 12, 13, 22, 29],
in which part of an image is removed and replaced by some set of values. This
is the tampering we will consider in this paper.

4 L. Le Jeune et al.

2.3 Related work

In this section we review related work, with a special focus on throughput.
In [20], Raj et al. investigated a number of watermarking schemes with self-
recovery on the same hardware, providing an excellent starting point. Their
results consider the impact of watermarking with regards to image integrity (in
Peak signal-to-noise ratio (PSNR), as explained in Sect. 3.5) and embedding
time, with all experiments executed on the same hardware. Their experiments
suggest that Rajput et al.’s work [21] significantly outpaces other work with
regards to embedding speed. They reach their speed by keeping the embedding
process straightforward, i.e., they store four lower-resolution copies of the original
image in the four Least Significant Bits (LSBs) of the original image. They
then compare these images to detect tampering, and use the median values for
recovery. Other fragile watermarking approaches considered by Raj et al. [20] all
feature embedding processes that run for multiple seconds up to over a minute [2,
27, 3, 19, 28], and as such are too slow to be considered in our investigation.

Further literature review reveals that several authors also consider the em-
bedding time of their algorithm. Tab. 1 presents some of these implementations,
to facilitate comparison. Note that these methods are all benchmarked on dif-
ferent platforms, which limits the validity of throughput comparisons based on
individually reported results alone.

Bravo-Solorio et al. [8] introduce a watermarking mechanism based on tor-
nado codes. After a block-based tamper detection approach based on the hash
values of stored reconstruction bits, they use an iterative process to recover
tampered areas. Their boast a 100% recovery for tampering of up to 25% of the
image, with performance steeply declining afterwards.

Gul et al. [12] propose a block-based approach where average values of 4 ×
4 blocks are stored in predetermined partner blocks, and where the recovery
values are hashed to facilitate tamper detection. While their approach seems to
maintain image integrity, it is very slow.

Hussan et al. [13] suggest a similar block-based averaging that uses a chaos
mapping to randomize the location of blocks. While they boast good image
integrity performance in both embedding and recovery, their latency is also slow.

Sisaudia et al. [29] divide the input image in four sub images. They then
use 4 × 4 block averages for recovery and Local Binary Patterns (LBPs) for
authentication. They focus on the real-time component of the extraction and
recovery however, not the embedding, which is still relatively slow. They also
note that they can only resolve tampering for up to 50% of the image, after
which their performance quickly deteriorates.

Renklier et al. [22] provide another block-based approach that shuffles a por-
tion of the image based on a sudoku-inspired heuristic. They use 5 × 5 block
averages for recovery and hash-based authentication values. Their timing and
integrity results seem to be in a similar vein as most other work in Tab. 1. In
this Table, the PSNR is after watermarking, not tampering or recovery. Time
is given for embedding (Te), detection (Td) and recovery (Tr). BPP represents
the number of watermark bits that are stored at every pixel. All results are for

Fast and robust fragile watermarking with self-recovery for UAS 5

512 × 512 sized images, and the average for many images whenever applicable.
Rows in bold have been selected for our experiments.

Table 1. Fragile watermarking approaches in the literature that consider embedding
speed. Ranges in square brackets report Td and Tr combined.

Ref. Date PSNR (dB) BPP Te (s) Td (s) Tr (s) CPU (Intel)
[21] 2020 29.82 4 2.40 2.9 0.55 i7 8GB
[8] 2018 37.9 3 3.2 - 27.8 i5 2.67Ghz 4GB
[12] 2020 44.41 2 179.37 [180-198] i5–7500 3.4GHz 4GB
[13] 2022 39.22 2 16.66 - - N3350 1.1GHz 4GB
[29] 2024 44.75 2 3.16 0.55 i7 6GB
[22] 2024 44.22 2 3.57 [4.45-5.07] i7-10500 2.8GHz 16GB

Besides throughput, we are also interested in maintaining the image integrity
as much as possible. Shebab et al. [26] use the singular values of a Singular Value
Decomposition (SVD) to authenticate blocks, and uses average values to provide
reconstructive capabilities. Molina-Garcia et al. [17] transform their image to
the YCrCb color space and apply Floyd-Steinberg dithering on the luminance
component in an effort to downsize the reconstruction image. For authentication,
they use Exclusive OR (XOR) computations to hash blocks of the original image.
Both methods boast excellent performance in the literature.

From this related work, we include [21, 29] for our experiments, as these seem
the most likely candidates for high-speed solutions. Additionally, we consider
[26, 17] as a reference for high-quality fragile watermarking. Finally, we also
include the work of Bouarroudj et al. [6, 5, 7], as their code is publicly available,
even though they do not report their speed. They propose a Discrete Wavelet
Transform (DWT) approach where they use DWT to both extract recovery bits
and do tamper detection, and they boast excellent integrity results.

2.4 Open issues

When considering related work for fragile watermarking, several open issues (i.e.,
dealing with full pixels to zero tampering, secure shuffling, and latency) need to
be resolved to allow for real-time embedded watermarking.

Full pixel zero tampering A core issue occurring in multiple papers [26,
17, 29] is storing authentication bits at the location they authenticate. Consider
image I(x, y) with dimensions m × n ∈ IN and x and y as coordinates. Func-
tion a(I, x, y) generates an authentication digest of I at location (x, y), and
T (I, x, y) represents some tampering operation on I at location (x, y). Any time
a(I, x, y) = T (I, x, y), the authentication will not detect the tampering. A simple
example of this is the special case that a location is zeroed out completely.

a(I, x, y) =

∑1
i=0

∑1
j=0 I(x+ i, y + j)

4
(1)

6 L. Le Jeune et al.

Let a be some averaging operation as demonstrated in Eq. 1. In this case, if an
attack would set all pixels to zero, this authentication method would not detect
any tampering, as the average of four zero-pixels is also zero.

In this work, we try to avoid this issue by using an authentication function
that is independent of a location’s value.

Secure shuffling Another issue is that while many papers propose some shuf-
fling approach, those approaches are often not suitable for security applications.
For instance, [26, 6] use Arnold’s Cat map [1], and [12] uses the logistic map,
both of which are chaotic mapping techniques. While these methods may provide
adequate shuffling to ensure recovery values are not all stored at their source lo-
cation, their security is not guaranteed: Arnold’s cat is periodic and will return
its input value after a number of iterations, while the logistic map has too small
of a key space [36]. Other approaches [17, 29] forgo a chaotic approach and simply
use fixed patterns, which allow for targeted attacks that tamper with everything
except for the authentication bits.

We propose randomization for both our shuffling as well as our authentication
to ensure that no locations or values are predictable.

Latency From the related work, it is clear that latency is not a parameter of
considerable concern for most fragile watermarking approaches. Only a portion
of authors reports latency, and an even smaller portion also explicitly mentions
latency as a design constraint [8, 29]. Tab. 1 shows that even low-latency schemes
feature multiple-second durations for relatively small 512×512 images, with only
two sub-second latencies for tamper recovery. This may be sufficient for single-
image use cases, but not for processing larger images in bulk.

In our work, we maintain image integrity and security constraints while re-
porting millisecond-scale embedding times for comparable images.

3 Proposed fragile watermarking approach

3.1 Scenario

We consider images captures by UAS that to be watermarked and anonymized
while still on the UAS to avoid information being leaked downstream. After-
wards, with the appropriate key, hidden information can be recovered.

For this scenario, we propose two solutions in this paper, HiLoSpatial and
HiResSpatial , to embed a fragile watermark as well as recovery information.
HiLoSpatial embeds one 50% size and two 25% size recovery images inside the
original image, while HiResSpatial embeds one grayscale full-size recovery image.
Both methods employ a spatial embedding approach and expect RGB-images,
but HiLoSpatial also works for grayscale images. Both are designed with low-
latency constraints in mind, avoiding complex computations to limit overhead.

Fast and robust fragile watermarking with self-recovery for UAS 7

3.2 HiLoSpatial

For the HiLoSpatial watermarking in Fig. 1a, we consider an n × m × 3 RGB
image. From this image, we extract two downsized versions from reconstruction:
Hi has higher resolution, with a n

2 ×
m
2 ×3 shape, while Lo has a lower resolution,

with a shape of n
4 ×

m
4 ×3. We use the Hi version once and the Lo version twice,

and we isolate the 4 Most Significant Bits (MSBs) from these three images. These
will form the recovery bits for image reconstruction after tampering.

(a) Watermark embedding process for the
HiLoSpatial approach.

(b) HiLoSpatial tamper detection and re-
covery flow.

Fig. 1. HiLoSpatial embedding, detection and recovery flows. Blue elements represent
tamper detection, red elements represent tamper recovery. Dashed lines mean that the
PRNG is used to shuffle, not to generate data.

By storing multiple, lower-resolution copies of the cover image, we reduce
the number of pixels needing interpolation during the recovery process. After
extracting 1 × Hi and 2 × Lo, each 4-bit value is first split in two 2-bit values.
Their results are reshaped to 1D vectors for each channel, concatenated, and
then shuffled using a PRNG. This PRNG allows for predictable shuffling if we
use a known key K as seed, but should seem random when the seed is unknown.
By shuffling, we ensure that recovery values are not all stored at their origin, as
otherwise tampering an area would also corrupt the area’s recovery values.
For authentication, we generate (mn/4)×3 authentication values between 0 and
3, which are all different 2-bit values. To construct the watermark, we divide each
channel of the target shape (m×n) into 2× 2 blocks. For example for a channel
of a 4×4 image (Fig. 2a), we store one authentication value ai, i ∈ [0,mn/4] and
three recovery values rj , j ∈ [0, 3mn/4] in each 2× 2 block. The location of ai is
randomly and independently determined for each block. After assigning all ai,
the ri values are taken from the shuffled array and stored in the empty locations
of the watermark. Finally, the resulting 2-bit watermark, which has the same
shape as the cover image, is used to replace the 2 LSBs of the cover.
The HiLoSpatial tamper detection and recovery flow is given in Fig. 1b. Using
the PRNG with K as seed, the placements of the ai values, as well as their

8 L. Le Jeune et al.

expected values, are retrieved. The retrieved values can then be compared to
the expected values to detect tampering. However, as explained in Sect. 3.4,
this comparison will not necessarily detect all tampering. As such, in order to
completely capture tamper areas, we use Algorithm 1 to mark blocks 8-adjacent
to tampered blocks as also being tampered. In essence, this algorithm grows all
tamper instances with one unit, practically meaning that we mark a 2-pixel band
around any detect tampering as tampered.

Algorithm 1 Grow algorithm to improve tamper detection coverage.
Require: tm with xsize, ysize ▷ 2D array tamper mask with xsize, ysize shape.

m← tm
for x = 0, . . . , xsize − 1 do

for y = 0, . . . , ysize − 1 do
if m[x, y] = 1 then

xmin ← max(0, x− 1)
xmax ← min(xsize, x+ 1)
ymin ← max(0, y − 1)
ymax ← min(ysize, y + 1)
m[xmin : xmax, ymin : ymax]← 1

end if
end for

end for
tm← m

The resulting tamper mask indicates which 2× 2 blocks have been tampered
with. In the case of tampering, the appropriate enclosed recovery values must be
used to reconstruct the original image. For this, we first determine void values,
i.e., the recovery values that are no longer valid due to their 2× 2 storage block
being tampered with. We do this by first marking all tampered pixels in a new
array. Then, after undoing the shuffling on the watermark, the array of recov-
ery values can be extracted and reshaped into the Hi and Lo recovery images.
Additionally, performing the same shuffling reversal on the marked tampered
pixel array reveals which recovery values have become void. We then construct
void masks to represent this information. Next, valid Lo values are used to fill
in the void Hi values whenever possible, Afterwards, any remaining voids in Hi
are filled by taking the average value of their neighbors. Once no more voids
are present in Hi, it is used to fill in the tampered portions of the input image.
Optionally, we also include a sharpening step in which we add the Laplacian of
the reconstruction area to that area, as using the lower-resolution Hi and Lo
recovery images can result in a blurry recovery area.

3.3 HiResSpatial

The HiResSpatial approach aims to facilitate high-resolution recovery of features
in an image, as for example small texts may become illegible after recovery in

Fast and robust fragile watermarking with self-recovery for UAS 9

HiLoSpatial and identified related work. For example, if a small license plate is
anonymized, it is important that all of its characters are legible after recovery.
As such, we store the 4 MSBs of a full-resolution grayscale representation of the
cover image. The embedding process as shown in Fig. 3a is similar to HiLoSpatial ,
but the approach to distribute authentication values significantly differs. We now
generate and store authentication values ai, i ∈ [0,mn[for every RGB pixel, and
store them in a randomly selected channel. The 4-bit grayscale recovery values
are split in their LSB and MSB counterparts, rL,j and rM,j for j ∈ [0,mn[,
respectively. The remaining spots are filled channel-wise in the following order:
ai, then rL,j , then rM,j as demonstrated in Fig. 2b. The resulting construction
is embedded in the cover image.

(a) (b)

Fig. 2. Approach to storing authentication and recovery values in HiLoSpatial (a) and
HiResSpatial (b). While for HiResSpatial the per-pixel distribution is randomized, for
subsequent channels, the order always amounts to ai → rL,i → rM,i.

(a) Watermark embedding process for the
HiResSpatial approach.

(b) HiResSpatial tamper detection and re-
covery flow.

Fig. 3. HiResSpatial embedding, detection and recovery flows. Blue elements represent
tamper detection, red elements represent tamper recovery. Dashed lines mean that the
PRNG is used to shuffle, not to generate data.

The recovery approach is nearly identical to HiLoSpatial . After undoing the
data distribution and retrieving the stored information, the authentication values

10 L. Le Jeune et al.

can be compared to construct a tamper mask. This mask is more fine-grained
however, as each pixel has its own authentication value. This means that we can
detect tampering on a pixel-level as opposed to a 2 × 2 block-level, which was
the case for HiLoSpatial . If tampering is detected, the tamper mask can once
again be used to identify void recovery values by undoing the shuffle operation
on marked pixels. As we only store one copy of the cover however, the only way
to fill in these voids is by averaging over the neighbors. Once all voids have been
filled in, the tampered areas can be restored. We do not do any sharping here,
as the reconstruction image is based on a full-size version of the original image.

3.4 Discussion of the security aspects

We secure both HiLoSpatial and HiResSpatial by employing randomization with
a PRNG and a seed K, meaning the randomization can only be reproduced if
you have access to K. Using the output of the PRNG, authentication bits are
generated and watermark bits are shuffled, such that an attacker cannot predict
the values or locations to perform targeted attacks. If an attacker knows the
location of ai, he can avoid it by only tampering the neighboring recovery values.
If the locations of specific recovery values are known, an attacker can extract
the recovery image, or also tamper with those values to compromise recovery.

For the authentication, we use 2-bit authentication values ai ∈ {0, 1, 2, 3}
that are stored in the 2 least significant bits (LSBs). If a pixel storing ai is
tampered with and receives a random value a′i, the probability that a′i ̸= ai is:

P (a′i ̸= ai) =
3

4
= 0.75.

In the case of HiLoSpatial specifically, for each block of 2 × 2 pixels, only
one pixel stores an authentication value ai. Let E be the event that a randomly
chosen pixel in the block is tampered with, and D be the event that the tam-
pering is detected. The probability of detecting a change when only one pixel is
randomly altered is:

P (D) = P (E) · P (a′i ̸= ai),

where P (E) = 1
4 (since only one out of four pixels in the block stores ai),

and P (a′i ̸= ai) =
3
4 . Thus,

P (D) =
1

4
· 3
4
=

3

16
= 0.1875,

or approximately 19%.
However, as the main purpose of these techniques is to recover anonymized

areas, we do not need to detect every tampered pixel. Instead, if we detect some
instances of tampering in an area, we assume that their direct neighbors are also
tampered with. This assumption is tested in the experiments in the next section
to verify whether we can accurately detect tampering. Note that HiResSpatial
allows for a more fine-grained tamper detection, as each pixel is protected by an
authentication value, with a 0.75 probability to detect a pixel being randomized.

Fast and robust fragile watermarking with self-recovery for UAS 11

3.5 Evaluation metrics

To evaluate image integrity, the ground truth cover image I and the changed
image Î with shapes m × n are typically compared. The Mean Square Error
(MSE) as given in Eq. 2 averages the square difference between corresponding
pixels in I and Î.

MSE
(
I, Î

)
=

1

n ·m

m∑
x=1

n∑
y=1

(
I(x, y)− Î(x, y)

)
(2)

The PSNR in Eq. 3 considers the ratio between the maximum value of a pixel
L (255 for 8-bit images) and the measured error, expressed in decibel (dB).

PSNR
(
I, Î

)
= 10 log

 L2

MSE
(
I, Î

)
 (3)

The Structural Similarity Index Measure (SSIM) aims to measure the simi-
larity between two images [30], and is given in Eq. 4. It measures similarity by
comparing luminance (µx and µy), contrast (σx and σy) and structure (σxy) of
corresponding windows x and y in images I and Î. The constants c1 = (0.01L)2

and c2 = (0.03L)2 stabilize the equation in the case of small denominators. In
our experiments, we use 11× 11 windows, where x = y = 11.

SSIM (x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(4)

To evaluate tamper detection performance, we use the detection rate or recall
R, as given in Eq. 5. It measures the number of true positives (tp), which are
pixels with correctly detected tampering, with respect to the tp and the number
of tampered pixels that go unnoticed (false negatives fn).

R =
tp

tp+ fn
(5)

4 Experiments

We conduct several experiments to investigate the viability of our approach.
First, we investigate how well our authentication approach can detect tampering.
Secondly, we explore how well the overall performance of both approaches is.
For each experiment, we use five RGB 512 × 512 images that are commonly
used in watermarking research: Airplane, Baboon, Car, Peppers, Sailboat, in
Fig. 4. Additionally, we consider one larger image from the VisDrone drone
image dataset [35], along with a 1024 × 1024 crop (in Fig. 5), to explore how
well the tested algorithms scale if the number of pixels increases.

We implement HiLoSpatial and HiResSpatial , as well as the comparative
work, in Python 3.12 on a laptop with an Intel i7-1365U processor and 16GB
Random Access Memory (RAM). For comparison, we implement [26, 21, 17, 29]
based on their respective paper descriptions and we optimize the resulting code to

12 L. Le Jeune et al.

(a) Airplane (b) Baboon (c) Car (d) Peppers (e) Sailboat

Fig. 4. 512× 512 test images.

(a) (b) (c) (d) (e)

Fig. 5. Left: Base image (a) and two 50% cropping attacks: Replacing the cropped
areas with randomized values (b) or zeroes (c). Right: 1920×1080 baseline large image
(d), with 1024× 1024 crop (e).

the best of our ability. For [6], we use the available code 1, which we first modify
to allow non-square images as well as introduce some speed optimizations. Our
code will be made publicly available2.

We use cropping as a tamper mechanism to evaluate watermarking. This
replaces a portion of the attacked image by other values, e.g. random values or
zeroes (in Fig. 5). Unless otherwise specified, in our experiments we always crop
a specific percentage of the overall area, centered in the middle of the image.

4.1 Tamper detection coverage

To investigate the coverage of our tamper detection approach, we watermark a
zero-valued 512× 512 image on which we perform cropping attacks. For various
crop edge sizes, we replace the pixels at a random area in the image with ran-
domized values. We then perform tamper detection, both with and without using
Algorithm 1, and compute the recall. We also consider the variant of HiLoSpa-
tial for 1-channel images, as this should verify the percentages mentioned in
Sect. 3.4. Each instance is run for a 100,000 iterations. The results are given in
Tab. 2, and indicate that our approach can detect 99% of all tampering for edge
size 32 with HiLoSpatial and edge size 2 with HiResSpatial .

1 https://github.com/Riadh-Bouarroudj/Fragile-image-watermarking-with-recovery
2 https://github.com/sirris-fragile-watermarking/CIMSS2025

Fast and robust fragile watermarking with self-recovery for UAS 13

Table 2. Detection recall with (grow) or without (base) using the grow function, for
HiLoSpatial (HiLo) and HiResSpatial (HiRes). c is the number of channels in an image.

Edge size
Name c Variant 1 2 4 16 32 128 256

HiLo 1 base 0.1873 0.4226 0.5738 0.7039 0.7267 0.7442 0.7471
grow 0.1873 0.5224 0.8066 0.9578 0.9776 0.9916 0.9939

HiLo 3 base 0.2455 0.5548 0.7539 0.9239 0.9539 0.9767 0.9805
grow 0.2455 0.6678 0.9013 0.9817 0.9914 0.9980 0.9990

HiRes 3 base 0.7527 0.7493 0.7502 0.7500 0.7500 0.7500 0.7500
grow 0.7527 0.9961 0.9997 1.0000 1.0000 1.0000 1.0000

4.2 Watermarking cost

Furthermore, we investigate the cost of watermarking by investigating two as-
pects. Firstly, watermarking decreases the integrity of an image, as a portion of
the image is used to store authentication and reconstruction information, rather
than its original information. Secondly, watermarking introduces new processing
steps resulting in additional computational overhead.

We measure the integrity cost by comparing the watermarked images with
the original and measuring the MSE, PSNR and SSIM, for each of the 512×512
test images. We compute these results for every test image separately, then aver-
age the results. Additionally, we evaluate the processing overhead by measuring
the latency of the watermark embedding step Te and the tamper detection step
Td for both the 512× 512 and larger test images. These measurement are done
by respectively repeating the embedding and tamper detection steps 100 times
and computing the average. We use the singular drone images in Fig. 5e and
5d for each of the larger dimensions to limit the growing processing time and
because embedding and tamper detection speed should not depend on the con-
tent of the source image. Tab. 3 gives the results, with the best values in bold.
Clearly, HiLoSpatial and HiResSpatial both considerably surpass related work
when considering latency, with the sole exception of [21] (who have a very high
MSE), while maintaining a very small impact on image integrity.

Table 3. Watermark embedding impact with regards to average image integrity and
computation time.

Shape: 512 × 512 1024 × 1024 1080 × 1920
Approach MSE PSNR SSIM Te (s) Td (s) Te (s) Td (s) Te (s) Td (s)
HiLo 2.47 44.20 0.99 0.02 0.11 0.08 0.40 0.15 0.74
HiRes 2.46 44.23 0.99 0.03 0.21 0.11 0.76 0.22 1.44
[26] 2.50 44.15 0.99 2.91 2.58 8.22 7.37 15.50 13.82
[21] 37.75 32.37 0.89 0.02 0.05 0.07 0.14 0.15 0.28
[17] 9.84 38.21 0.97 2.35 0.67 6.82 1.93 12.76 3.72
[6] 1.79 45.62 0.99 2.34 1.44 7.47 4.52 13.36 8.37
[29] 2.54 44.08 0.99 1.17 11.42 4.38 242.46 7.60 890.44

Note that Td may increase slightly in the case of tampering. For HiLoSpatial
and HiResSpatial , the grow function iterates over every pixel to check whether it
has been tampered with. In the case of tampering, an additional step to label its
neighbors is done. To provide a baseline, we consider images without tampering.

14 L. Le Jeune et al.

4.3 Tamper recovery

After measuring what the cost of watermarking is, we can measure how well the
watermarking mechanism is suited for both tamper detection and recovery. We
test this by doing tamper detection and recovery experiments for all 512×512 test
images and averaging results. To emulate tampering, we range a cropping attack
from 10% to 75%, replacing the cropped area with random values or zeroes.
Tab. 4 gives the tamper detection performance, while Tab. 5 gives the recovery
results. Our approaches consistently match or surpass the best related work,
while most other approaches only work reliably for low amounts of randomized
tampering and quickly fail in the case of zero tampering[26, 21, 17, 29].

Table 4. Recall of the tamper detection after cropping areas of the image.

Center crop random Center crop zero
Approach 10% 25% 50% 75% 10% 25% 50% 75%
HiLo 1.0000 1.0000 0.9987 0.9989 1.0000 1.0000 0.9987 0.9989
Gray 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
[26] 1.0000 1.0000 1.0000 1.0000 0.0124 0.0000 0.0110 0.0135
[21] 0.8182 0.8148 0.8270 0.8437 0.9609 0.8338 0.3184 0.0204
[17] 0.9995 0.9998 0.9996 0.9997 0.0124 0.0000 0.0110 0.0135
[6] 0.9997 1.0000 1.0000 1.0000 0.9997 1.0000 0.9999 1.0000
[29] 1.0000 1.0000 1.0000 1.0000 0.9993 1.0000 0.6698 0.3099

Table 5. Tamper correction with respect to the original image without watermarking
for increasing amounts of tampering.

Center crop random
10% 25% 50% 75%

Approach MSE PSNR SSIM MSE PSNR SSIM MSE PSNR SSIM MSE PSNR SSIM
Gray 151.86 27.45 0.96 365.23 23.56 0.92 647.58 21.00 0.85 993.41 18.94 0.72
HiLo 23.86 34.44 0.97 60.56 30.41 0.93 200.78 25.42 0.82 680.22 19.89 0.59
[26] 23.04 34.61 0.97 72.08 29.64 0.93 364.08 22.63 0.79 5838.06 10.61 0.28
[21] 223.32 24.65 0.81 682.60 19.80 0.66 2221.34 14.67 0.28 4679.68 11.45 0.09
[17] 36.85 32.49 0.95 76.00 29.39 0.91 245.92 24.38 0.76 762.88 19.38 0.49
[6] 44.40 31.79 0.96 94.27 28.56 0.91 227.82 24.86 0.80 410.47 22.21 0.65
[29] 16.58 35.98 0.98 35.73 32.67 0.96 2937.63 13.54 0.73 8743.79 8.82 0.35

Center crop zero
10% 25% 50% 75%

Approach MSE PSNR SSIM MSE PSNR SSIM MSE PSNR SSIM MSE PSNR SSIM
Gray 151.86 27.45 0.96 365.21 23.56 0.92 647.58 21.00 0.85 993.32 18.94 0.72
HiLo 23.86 34.44 0.97 60.57 30.41 0.93 201.99 25.40 0.82 686.52 19.85 0.58
[26] 2485.01 14.27 0.88 6253.86 10.24 0.72 11851.11 7.49 0.44 17673.73 5.81 0.18
[21] 221.24 24.75 0.82 1869.77 15.48 0.56 10929.14 7.86 0.14 20796.92 5.11 0.02
[17] 2489.59 14.26 0.86 6259.35 10.23 0.70 11878.35 7.48 0.43 17638.16 5.81 0.18
[6] 45.26 31.70 0.95 94.33 28.56 0.91 228.37 24.85 0.80 410.27 22.21 0.65
[29] 2471.16 14.29 0.88 6253.88 10.24 0.72 11918.27 7.47 0.45 17752.41 5.79 0.18

5 Discussion

5.1 Tamper detection

Tab. 2 and Tab. 4 present the tamper detection performance of HiLoSpatial
and HiResSpatial and a comparison with the related work. Tab. 2 reveals that

Fast and robust fragile watermarking with self-recovery for UAS 15

while our authentication approach is not well suited to detect pixel-scale dis-
turbances, it quickly scales to a very high detection rate. Considering 3-channel
images, 99% of all 32×32-sized tampering is already detected using HiLoSpatial ,
while HiResSpatial detects all tampering starting from 16× 16 attack windows.
Clearly using the grow function in Alg. 1 significantly increases tamper detec-
tion performance. For HiLoSpatial the added value decreases as the tamper area
increases, but as HiResSpatial is stuck at a maximum 75% detection rate for
random tampering, it remains very relevant. The specific case of 1-pixel tam-
pering for 1-channel HiLoSpatial also results in a tamper detection of 18.73%,
which confirms the accuracy of our estimates in Sect. 3.4. The comparison in
Tab. 4 clearly indicates our results match and in several cases surpass the state
of the art. HiLoSpatial has 99.9% tamper detection rate which is sufficient. Ra-
jput et al. [21] has in many cases 82% and the other approaches all work well
for the random cropping case. However, for zero cropping, in which attacked
pixels are replaced with zeroes, most tamper detection mechanism break down.
This is due to the fact that [26, 17, 21, 29] all suffer from the problem described
in Sect. 2.4. As the authentication function a(0) = 0, the tampering is hardly
detected. For [21], the authentication is based on the median of four pixel values
with randomly determined locations. As the amount of tampering increases the
probability that the majority of these pixels is tampered with increases. That ex-
plains that while the approach works for limited tampering, it completely breaks
down when tampering increases.

For the specific case of anonymization in a UAS surveillance flow, our ap-
proach is very well suited, as it excels at detecting areas of tampering. Since
anonymization will always target an area, e.g. a license plate or face, which
encompasses many pixels, our approaches will not suffer from the reduced per-
formance they face when detecting tampering on individual, isolated pixels.

Overall, our proposed techniques succeed in accurately and reliably detecting
tampering for cropping-based attacks, even in cases where related work fails.

5.2 Tamper recovery

In order to evaluate the tamper recovery, we consider random and zero cropping
attacks in Tab. 5, which we additionally visualize in Fig. 7 and 8. As shown
in Sect. 5.1, all related work except for Bouarroudj et al. [6] fails to do reli-
able tamper detection for zero cropping, which means no recovery can be done.
Consequently, we will mostly consider the best-case scenario of random crop-
ping for comparisons. Clearly, [29] greatly outperforms all other approaches for
sub-50% tampering. From 50%, which is a little earlier than described in the cor-
responding paper, their performance drastically deteriorates. In all other cases,
our HiLoSpatial achieves the best MSE and PSNR. Only for 75% tampering its
SSIM is surpassed by [6] and HiResSpatial . This is because for this tampering
amount, there only remains a small portion of valid recovery pixels.

In that case, [6] and HiResSpatial are slightly better at representing the over-
all structure, contrast and luminance. Overall [6] has performance comparable
to HiLoSpatial . As expected, HiResSpatial achieves worse results for MSE and

16 L. Le Jeune et al.

(a) Original (b) Anonymized (c) HiLo (d) HiRes

Fig. 6. Recovery of details using HiLoSpatial and HiResSpatial .

PSNR, because it does not recover color information. It however remains com-
petitive with regards to SSIM and even has the best SSIM for ≥ 50% tampering.
This indicates that while the color information is lost, HiResSpatial excels at re-
taining structural information, meaning that the reconstructed image will be the
sharpest. Or, in other words, structural details will be much clearer, which helps
when trying to read a small license plate or make out specific facial features in
UAS footage. This principle is demonstrated for a 256×256 crop of the VisDrone
image in Fig. 6, where HiResSpatial is able to completely restore the structural
information of the license plate.

5.3 Latency performance

Tab. 3 gives both the impact of embedding on 512 × 512 images as well as the
latency of watermark embedding and tamper detection. It is clear that our pro-
posed techniques are only slightly surpassed by [6] with regards to maintaining
image integrity while watermarking. Solely [21] has a higher impact on image
integrity, due to the approach needing the 4 LSBs to store recovery bits. When
considering the latency, this median-based technique is also the only technique
that has lower latencies. This can mostly be attributed to the very simple pro-
cess, i.e., the technique only has to randomly shuffle and store 4 lower-resolution
copies. As the image size increases, the latencies do as well. It is clear that our ap-
proaches significantly outpace related work, with the exception of [21]. However,
[21] has to compensate for its speed by its considerable loss in image integrity,
after both embedding and recovery. Overall, our techniques sport among the best
integrity retention ones while significantly outpacing nearly all related work.

5.4 Security

As discussed in Sect. 2.4, nearly all related work is unsuitable for security ap-
plications due to insecure or lack of shuffling. We mitigate this by applying
randomization in three instances:

– The location of recovery values to ensure that tampering an area does not
corrupt all corresponding recovery values, and prevent attackers from guess-
ing where specific recovery values are stored.

Fast and robust fragile watermarking with self-recovery for UAS 17

(a) Tamp 10% (b) Tamp 25% (c) Tamp 50% (d) Tamp 75%

(e) HiLo 10% (f) HiLo 25% (g) HiLo 50% (h) HiLo 75%

(i) HiRes 10% (j) HiRes 25% (k) HiRes 50% (l) HiRes 75%

(m) Bou 10% (n) Bou 25% (o) Bou 50% (p) Bou 75%

(q) Rajp 10% (r) Rajp 25% (s) Rajp 50% (t) Rajp 75%

(u) Sis 10% (v) Sis 25% (w) Sis 50% (x) Sis 75%

Fig. 7. Recovery results on Peppers with varying degrees of tampering. The tamper
masks are given in the top row (Tamp). Results for HiLoSpatial (HiLo), HiResSpatial
(HiRes), Bouarroudj et al. (Bou), Rajput et al. (Rajp) and Sisaudia et al. (Sis).

18 L. Le Jeune et al.

(a) She 10% (b) She 25% (c) She 50% (d) She 75%

(e) Mol 10% (f) Mol 25% (g) Mol 50% (h) Mol 75%

Fig. 8. Continutation of recovery results on Peppers for Sisaudia et al. (Sis), Shebab et
al. (She) and Molina-Garcia et al. (Mol).

– Authentication values to prevent targeted attacks that avoid changing au-
thentication values to go unnoticed.

– The location of authentication values to prevent attackers from specifically
avoiding the LSBs of authentication pixels.

As shown in the experiments, our solutions are robust to attacks. There is how-
ever one caveat. Currently, our randomization is based on Numpy’s implementa-
tion. While fast, their random number generation is not cryptographically secure.
To further ensure thorough security, the solution should apply Cryptographically
Secure Pseudorandom Number Generators (CSPRNGs) instead.

6 Conclusion and future work

In this paper we present HiLoSpatial and HiResSpatial , two fragile watermarking
techniques that allow respectively full-colour and grayscale recovery for 3-channel
images after tampering. These match and in many cases surpass related work
with regards to tamper detection performance and image integrity retention after
watermarking and recovery. Moreover, they significantly outpace related work
when considering embedding and detection latency. This makes them very suit-
able for deployment in real-time on-device image processing for UAS applications
supporting the security of critical infrastructure while protecting personal data.
Interesting future research directions include investigating how to apply these
techniques to video streams and how to optimally implement them on-device.
Additionally, we need to investigate what lightweight CSPRNGs are suitable for
this application, in an effort to maximize throughput while maintaining security.

Acknowledgments. This work is conducted in the context of the SINTRA project
(https://sintra-ai.odoo.com/), a project labeled by ITEA4 under project no. 22006,

Fast and robust fragile watermarking with self-recovery for UAS 19

with funding support from Innoviris Brussels and VLAIO Flanders in Belgium. The
project features cooperation with over 30 partners from industry and academia and 4
countries, i.e. Belgium, Finland, The Netherlands and Türkiye.

Disclosure of Interests. The authors have no competing interests.

References

1. Arnold, V., Avez, A.: Problèmes ergodiques de la mécanique classique. Monogra-
phies internationales de mathématiques modernes, Gauthier-Villars (1967)

2. Benrhouma, O., Hermassi, H., Belghith, S.: Security analysis and improvement of
an active watermarking system for image tampering detection using a self-recovery
scheme. Multimed. Tools Appl. 76(20), 21133–21156 (Oct 2017)

3. Bolourian Haghighi, B., Taherinia, A.H., Harati, A.: Trlh: Fragile and blind dual
watermarking for image tamper detection and self-recovery based on lifting wavelet
transform and halftoning technique. Journal of Visual Communication and Image
Representation 50, 49–64 (2018)

4. Bonetto, M., Korshunov, P., Ramponi, G., Ebrahimi, T.: Privacy in mini-drone
based video surveillance. In: 2015 11th IEEE FG. vol. 04, pp. 1–6 (2015)

5. Bouarroudj, R., Souami, F., Belalla, F.Z.: Reversible fragile watermarking for med-
ical image authentication in the frequency domain. In: 2023 2nd IC2EM. vol. 1,
pp. 1–6 (2023)

6. Bouarroudj, R., Souami, F., Bellala, F.Z.: Fragile watermarking for medical image
authentication based on dct technique. In: 2023 5th PAIS). pp. 1–6 (2023)

7. Bouarroudj, R., Souami, F., Zohra Bellala, F., Zerrouki, N.: A reversible fragile
watermarking technique using fourier transform and fibonacci q-matrix for medical
image authentication. Biomedical Signal Processing and Control 92, 1–11 (2024)

8. Bravo-Solorio, S., Calderon, F., Li, C.T., Nandi, A.K.: Fast fragile watermark em-
bedding and iterative mechanism with high self-restoration performance. Digital
Signal Processing 73, 83–92 (2018)

9. Council of European Union: Regulation (eu) 2016/679 of the european parliament
and of the council of 27 april 2016 on the protection of natural persons with regard
to the processing of personal data and on the free movement of such data, and
repealing directive 95/46/ec (general data protection regulation) (2016),
https://eur-lex.europa.eu/eli/reg/2016/679/oj/eng

10. Gohari, A., Ahmad, A.B., Rahim, R.B.A., Supa’at, A.S.M., Abd Razak, S., Gis-
malla, M.S.M.: Involvement of surveillance drones in smart cities: A systematic
review. IEEE Access 10, 56611–56628 (2022)

11. Greenwood, W.W., Lynch, J.P., Zekkos, D.: Applications of uavs in civil infras-
tructure. Journal of Infrastructure Systems 25(2), 04019002 (2019)

12. Gul, E., Ozturk, S.: A novel triple recovery information embedding approach for
self-embedded digital image watermarking. Multimed. Tools Appl. 79(41), 31239–
31264 (Nov 2020)

13. Hussan, M., Parah, S.A., Jan, A., Qureshi, G.J.: Self-embedding framework for
tamper detection and restoration of color images. Multimed. Tools Appl. 81(13),
18563–18594 (May 2022)

14. Lee, S.J., Jung, S.H.: A survey of watermarking techniques applied to multime-
dia. In: ISIE 2001. 2001 IEEE International Symposium on Industrial Electronics
Proceedings (Cat. No.01TH8570). vol. 1, pp. 272–277 (2001)

20 L. Le Jeune et al.

15. Mandirola, M., Casarotti, C., Peloso, S., Lanese, I., Brunesi, E., Senaldi, I.: Use of
uas for damage inspection and assessment of bridge infrastructures. International
Journal of Disaster Risk Reduction 72, 102824 (2022)

16. Maximov, M., Elezi, I., Leal-Taixe, L.: Ciagan: Conditional identity anonymization
generative adversarial networks. In: Proc. of the IEEE/CVF CVPR (June 2020)

17. Molina-Garcia, J., Garcia-Salgado, B.P., Ponomaryov, V., Reyes-Reyes, R.,
Sadovnychiy, S., Cruz-Ramos, C.: An effective fragile watermarking scheme for
color image tampering detection and self-recovery. Signal Processing: Image Com-
munication 81, 115725 (2020)

18. Proença, H.: The uu-net: Reversible face de-identification for visual surveillance
video footage. IEEE TCSVT 32(2), 496–509 (2022)

19. Qin, C., Ji, P., Chang, C.C., Dong, J., Sun, X.: Non-uniform watermark sharing
based on optimal iterative btc for image tampering recovery. IEEE MultiMedia
25(3), 36–48 (2018)

20. Raj, N.R.N., Shreelekshmi, R.: A survey on fragile watermarking based image
authentication schemes. Multimed. Tools Appl. 80(13), 19307–19333 (May 2021)

21. Rajput, V., Ansari, I.A.: Image tamper detection and self-recovery using multiple
median watermarking. Multimed. Tools Appl. 79(47), 35519–35535 (Dec 2020)

22. Renklier, A., Öztürk, S.: Image authentication and recovery: Sudoku puzzle and
md5 hash algorithm based self-embedding fragile image watermarking method.
Multimed. Tools Appl. 83(5), 13929–13951 (Feb 2024)

23. Rey, C., Dugelay, J.L.: A survey of watermarking algorithms for image authenti-
cation. EURASIP Journ. on Adv. in Sign. Proc. 2002(6), 613–621 (Jun 2002)

24. Santos de Melo, R.R., Costa, D.B., Álvares, J.S., Irizarry, J.: Applicability of un-
manned aerial system (uas) for safety inspection on construction sites. Safety Sci-
ence 98, 174–185 (2017)

25. Shakhatreh, H., Sawalmeh, A.H., Al-Fuqaha, A., Dou, Z., Almaita, E., Khalil, I.,
Othman, N.S., Khreishah, A., Guizani, M.: Unmanned aerial vehicles (uavs): A
survey on civil applications and key research challenges. IEEE Access 7, 48572–
48634 (2019)

26. Shehab, A., Elhoseny, M., Muhammad, K., Sangaiah, A.K., Yang, P., Huang, H.,
Hou, G.: Secure and robust fragile watermarking scheme for medical images. IEEE
Access 6, 10269–10278 (2018)

27. Singh, D., Singh, S.K.: Dct based efficient fragile watermarking scheme for image
authentication and restoration. Multimed. Tools Appl. 76(1), 953–977 (Jan 2017)

28. Singh, D., Singh, S.K.: Block truncation coding based effective watermarking
scheme for image authentication with recovery capability. Multimed. Tools Appl.
78(4), 4197–4215 (Feb 2019)

29. Sisaudia, V., Vishwakarma, V.P.: Approximate regeneration of image using fragile
watermarking for tamper detection and recovery in real time. Multimed. Tools
Appl. 83(25), 66299–66318 (Jul 2024)

30. Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from
error visibility to structural similarity. IEEE TIP 13(4), 600–612 (April 2004)

31. Yamaç, M., Ahishali, M., Passalis, N., Raitoharju, J., Sankur, B., Gabbouj, M.:
Multi-level reversible data anonymization via compressive sensing and data hiding.
IEEE TIFS 16, 1014–1028 (2021)

32. Ye, M., Shen, W., Zhang, J., Yang, Y., Du, B.: Securereid: Privacy-preserving
anonymization for person re-identification. IEEE TIFS 19, 2840–2853 (2024)

33. Zhai, L., Guo, Q., Xie, X., Ma, L., Wang, Y.E., Liu, Y.: A3gan: Attribute-aware
anonymization networks for face de-identification. In: Proceedings of the 30th ACM
MM. p. 5303–5313. MM ’22, ACM, New York, NY, USA (2022)

Fast and robust fragile watermarking with self-recovery for UAS 21

34. Zhang, J., Ye, M., Yang, Y.: Learnable privacy-preserving anonymization for pedes-
trian images. In: Proceedings of the 30th ACM MM. p. 7300–7308. MM ’22, ACM,
New York, NY, USA (2022)

35. Zhu, P., Wen, L., Du, D., Bian, X., Fan, H., Hu, Q., Ling, H.: Detection and
tracking meet drones challenge. IEEE TPAMI 44(11), 7380–7399 (2021)

36. Zia, U., McCartney, M., Scotney, B., Martinez, J., AbuTair, M., Memon, J., Sajjad,
A.: Survey on image encryption techniques using chaotic maps in spatial, transform
and spatiotemporal domains. Intl. Journ. of Inf. Sec. 21(4), 917–935 (Aug 2022)

